
Woodson et al. (2005, 2007) showed that copepods aggregate 
near oceanographic structure associated with biochemical 
and physical gradients in the water column, thin layers.

Field observations show that zooplankton swim against 
up/downwelling currents in order to maintain depth position 
(Genin et al. 2005). 
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Further analyses will examine tracks to determine thresholds of 
shear strain rate that trigger maximum behavioral changes for 
each species.
Identifying threshold shear values will allow us to define an 
exact geometric region based on the fluid mechnaics of the jet, 
and thus compute behavioral parameters for regions inside and 
outside the jet layer, as well as pre- versus post-contact with jet.
ANOVA will be used to quantify statistical signinficance of be-
havioral changes.
Present results from a behavioral fractal analysis will be examined 
in the context of foraging and population-scale aggregations.

Behavioral Assays

Particle Image Velocimetry (PIV)

Mixed-sex, species-specific assays of 50-70 animals (collected 
locally, sorted, and acclimated) are conducted for two hours 
in a dark room at ambient water temperature/salinity. 

Behavioral assays with two tropical copepods, a temperate 
mysid, and an estuarine crab larvae were run in both upwell-
ing and downwelling flow configurations (separately). 

Zooplankters are allowed to interact freely with an upwelling or 
downwelling jet and trajectories are recorded under infrared il-
lumination. 

Videos are digitized (LabTrack, BioRAS) to obtain path trajec-
tories and various behavioral parameters are computed for 
portions of the path inside and outside the jet, as well as pre- 
and post-contact with the jet (swim speed, turning frequency, 
residence time, etc.).

Nonintrusive technique for 
quantifying flow fields
Flow seeded with neutrally-
buoyant particles 
Flow illuminated with an 
Nd:YAG laser (532 nm)
CCD camera captures 500  
images at 15 Hz
Particle displacement divided 
by laser pulse frequency 
Produce velocity vector field, 
shear field, etc.
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A laminar planar jet in a recirculating flume  was used to 
create fine-scale up/downwelling shear flow with targeted 
strain rate characteristics for behavioral assays. 
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Behavioral responses seen through changes in relative swimming speed are less pronounced than for TF, however trends within species are consis-
tent for both upwelling and downwelling flows.

The increase in TF for the 2 copepods indicates a definite behavioral responses to the jet layer. The slight decrease or stagnation in TF for the larger 
zooplankton indicates either a lack of response, or perhaps a mismatch in body size as it relates to the scale of the jet layer and the animals ability 
to sense the shear flow.

All species in both upwelling and downwelling flows show an increase in PRT, indicating an active choice to remain preferentially in the jet layer.

The peaks in the VNDGR frequency distributions at 0 and 1 for the jet treatment compared to the control (stagnant) cases for the 2 copepods shows a 
definite change in behavior in response to the jet. Low values of VNGDR indicate "U" or "n" shaped paths, indicating an active choice to exit the verti-
cal flow, whereas high values indicate more linear, vertical paths, indicative of a choice to remain in the jet layer. These phenomena could very well 
be the same behavior seen at different scales, and for the smaller (copepod) species show most likely an aversion to the jet layer. The larger species 
show more linear behavior in general (high VNGDR) and again may indicate a disparity in body size and mechano-sensitivity versus the jet layer size.


